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Abstract. Approximate expressions are derived for the phenomenological coefficients for
vacancy-mechanism matter transport in a nearest-neighbour interaction lattice gas model of a
concentrated binary alloy using the Kikuchi–Sato jump frequency model. These expressions are
constructed from the leading coefficients (moments) in the Taylor series expansions in powers of
time of the time correlation functions working within the Mori continued fraction representation.
Numerical results are compared with earlier Monte Carlo simulations and with the predictions
of the path probability method. Comparison with new Monte Carlo results shows that the
approximate time correlation functions are good at short times but are too small at relatively
long times.

1. Introduction

Within the framework of non-equilibrium thermodynamics the various matter transport
properties of solids are all expressed in terms of the phenomenological coefficients,Lij .
Here,Lij is the coefficient of proportionality between the flux of atom speciesi and the
thermodynamic force on atom speciesj in the linear flux equations. Statistical mechanical
theories are needed to obtain theoretical expressions for theseL-coefficients for models
whose parameters include both energies of interaction between atoms and between lattice
defects and also jump frequencies of atomic jumps between sites in various local atom
environments. Well established methods described by Allnatt and Lidiard (1993) are
available for calculating theL-coefficients for simple models of dilute alloys with a variety
of vacancy and interstitial defect transport mechanisms, but there is no comparable set of
routine methods for models of concentrated alloys. There are, of course, useful approximate
theories of the equilibrium properties of such alloys for the interacting lattice gas model
with nearest-neighbour interactions between atoms. Kikuchi and Sato (1969, 1970, 1972)
supplemented this equilibrium model with anansatz for atom–vacancy exchange jump
frequencies and calculated approximate expressions for theL-coefficients using the Kikuchi
(1966) path probability method (PPM); a review of the later applications of this method has
been given by Akbar (1992). A different approach has been the successful adaptation of
ideas from the Manning (1968, 1971) theory of random alloys by Bakker (1976) and Stolwijk
(1981) to calculations of the tracer diffusion coefficients of the Kikuchi–Sato model, but
there appear to be no other kinetic theories of the non-tracerL-coefficients for this or any
other parametrization of the jump frequencies. There are however Monte Carlo simulation
results for theL-coefficients of the Kikuchi–Sato model for binary alloys with a very small
vacancy content, mainly for the order–disorder case (Zhanget al 1989, Qin and Murch
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1993) but also for the strictly regular solution case (Allnatt and Allnatt 1991). In this paper
a new method is applied to the calculation of theL-coefficients of a concentrated alloy.

The route to be followed, which is suggested by extensive applications to transport
in fluids (Boon and Yip 1980, Hansen and McDonald 1986, Heyes and Powles 1990,
Tankeshwar and Pathak 1994), is the construction of the time correlation functions associated
with the transport coefficients from their moments working within the framework of the Mori
(1965) continued fraction formalism. Although we have been helped by our experience with
applications of this method to the Manning random alloy model (Qin and Allnatt 1995) and
to a two-sublattice generalization of that model (Qinet al 1997) we find the complexity of
the interacting lattice gas model is much greater and a separate development is needed.

In section 2 we define the Kikuchi–Sato model of a concentrated alloy with vacancy
transport and write the linear response formulae for theL-coefficients. In the next section
we examine the coefficients (moments) of the Taylor series expansions in powers of
time of the time correlation functions appearing in theL-coefficients. We introduce a
superposition approximation for the equilibrium distribution functions appearing in the
moments; it expresses them in terms of radial distribution functions. We also give
approximate expressions for calculating the radial distribution functions. Expressions for
the leading moments are found within these approximations assuming the absence of long
range order. The construction of approximate expressions for theL-coefficients from the
available moments within the Mori formalism is described in section 4. In the final section,
5, these results for theL-coefficients are compared with Monte Carlo simulation results and
the PPM theory. Brief comments on further development of the method are also made.

2. Model and linear response formulae

We consider a cubic binary alloy with nearest-neighbour interaction energiesEAA, EBB
andEAB between the atomic components A and B. There is a very small site fraction of
vacancies. We adopt the Kikuchi–Sato approximation for the exchange frequency of an A
atom with a vacant nearest-neighbour site when the lattice configuration preceding the jump
is α:

w(A)α = νA exp(−U †A/kT ) exp

( ∑
j=A,B

z(j)α Eij /kT

)
. (1)

Here bothνA, the frequency factor forA, andU †A, the energy of the jumping atom in
the saddle-point configuration, have been taken as independent of the initial and final
configurations. The energy in the second exponential is that of the jumping atom at its
site before the jump andz(j)α is the number ofj atom nearest neighbours to the jumping
atom before the jump. We can write the expression in the convenient form

w(i)α = w(0)i exp(−z(ī)α Ei/kT ) (2)

where ī = A when i = B andvice versa, and we define

Ei = Eii − Eiī (3)

w
(0)
i = νi exp(−[U †i − (z− 1)Eii ]/kT ) (4)

wherez is the coordination number of a site.
Our calculation starts from the general linear response formula (Allnatt and Lidiard

1993) for the phenomenological coefficientLij as the sum of two parts:

Lij = L(0)ij + L(1)ij . (5)
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The uncorrelated part,L(0)ij , is defined by

L
(0)
ij =

1

6V kT

∑
α,β

rβα(i) · rβα(j)wβαpα (6)

wherepα is the probability of finding the system in state (configuration)α at thermodynamic
equilibrium,wβα denotes the jump frequency for an atom jump that changes the state from
α to β andrβα(j) is the sum of the vector displacements of all atoms of speciesj in this
transition. The correlated part,L(1)ij , is defined by

L
(1)
ij = −

1

3V kT

∫ ∞
0

dt Cij (t) (7)

where

Cij (t) = −
∑
α,β,γ,δ

rδγ (i) · wδγGγβ(t)rβα(j)wβαpα. (8)

Here,Gγβ(t) is the conditional probability that the system initially in stateβ will be in
stateγ after time t . The functionCij (t) can be written in the form of a time correlation
function of stochastic velocities, see for example Qinet al (1995), but the form given here
is more convenient for the present purposes.

3. Calculation of moments of the time correlation function

The Taylor expansion of the time correlation function aboutt = 0 will be written as

Cij (t) =
∑
n=0

tn

n!
C
(n)
ij . (9)

As already described by Qinet al (1997), an expression for thenth moment,C(n)ij , can be
found by substituting the formal power series expansion of the propagatorGγβ(t) into (8);
the result is

C
(n)
ij = −

∑
α,β,γ,δ

rδγ (i) · wδγ |[W− Y]n|γβrβα(j)wβαpα (10)

where W is a matrix with elementsWγβ = wγβ(1− δγ,β), Y is a matrix with elements
Yγβ = −δγ,βwγγ , δγ,β is a Kroenecker delta and

−wγγ =
∑
δ 6=γ

wδγ . (11)

Our approximation for the phenomenological coefficients in section 4 is based on a
knowledge of the zeroth and first moments, plus the uncorrelated partL

(0)
ij . The calculation

of these quantities will be illustrated for parts of the first moment.

3.1. Reduction of formal expressions

According to equation (10) the first moment can be written as a difference of contributions
containingWγβ andYγβ respectively:

C
(1)
ij = C(1)ij (W)− C(1)ij (Y). (12)

In order to evaluate such expressions we introduce a notation for the positions of the
particles in the different molecular states. The item particle is taken to include both atoms
and vacancies. We define an occupancy variableρ

(p)

β (l) which is unity if there is a particle
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of kind p at sitel in stateβ and is zero otherwise. A typical jump frequency can then be
written as

wγβ =
∑
i

∑
l,s

ρ(v)γ (l− s)ρ(i)γ (l)ρ(v)β (l)ρ(i)β (l− s)w(i)β (l− s) (13)

wheres denotes a nearest-neighbour vector. The first part of the first moment, defined
through equations (10) and (12), can then be written as

−C(1)ij (W) =
∑
l,l1,l0

∑
s,s1,s0

∑
k

s · (−s0)〈ρ(v)(l− s)ρ(i)(l)|ρ(v)(l)ρ(i)(l− s)w(i)(l− s)

×ρ(v)(l1− s1)ρ
(k)(l1)|ρ(v)(l1)ρ(k)(l1− s1)w

(k)(l1− s1)ρ
(v)(l0)

×ρ(j)(l0− s0)|ρ(v)(l0− s0)ρ
(j)(l0)w

(j)(l0)〉. (14)

The vertical lines separate different states and the angle brackets denotes an equilibrium
average, for example

〈D|C|B|A〉 ≡
∑
δ,γ,β,α

DδCγBβAαpα (15)

where we shall callα, β, . . . the first, second, . . . states respectively. In (14) there are
restrictions to be added to the various summations as well as some simplifications, as
follows.

For a crystal ofN sites withz nearest neighbours per site there areNz possible choices
of the sitesl0 and l0 − s0 of the j atom and its adjacent vacancy in the initial state; each
of these contributes equally to the result. Since we consider only the limit of very dilute
vacancies, it will be the same vacancy in all the jumps in (14) and inspection of the second
state therefore shows thatl1 = l0, and for the third state shows thatl = l1 − s1. These
considerations allow (14) to be written as

−C(1)ij (W) = Nz
∑
s,s1

∑
k

s · (−s0)〈ρ(v)(l0− s1− s)

×ρ(i)(l0− s1)|ρ(i)(l0− s1− s)w(i)(l0− s1− s)ρ(v)(l0− s1)

×ρ(k)(l0)|ρ(k)(l0− s1)w
(k)(l0− s1)ρ

(v)(l0)

×ρ(j)(l0− s0)|ρ(v)(l0− s0)ρ
(j)(l0)w

(j)(l0)〉. (16)

The fact that the particles of different species must occupy different sites places
limitations on the nearest-neighbour vectors in this equation. In the second states1 = s0

contributes only ifk = j . Furthermore, whens1 6= s0 then s = −s1 contributes only
if k = i, and whens1 = s0 then s = −s0 contributes only ifi = j . The expression is
therefore evaluated by splitting the summations into four parts:∑
k

∑
s

∑
s1

→
∑
k

{ ∑
s6=−s1

∑
s1 6=s0

+ δk,i
∑
s1 6=s0

δs,−s1

+δk,j
∑
s6=−s0

δs1,s0 + δk,j δi,j δs1,s0δs,−s0

}
. (17)

We take as an example the evaluation of the contribution to (16) of the second set of
summations in (17):

Nz
∑
s1 6=s0

(−s1) · (−s0)〈ρ(i)(l0− s1)ρ
(v)(l0)|ρ(i)(l0)w(i)(l0)ρ(v)(l0− s1)|ρ(i)(l0− s1)

×w(i)(l0− s1)ρ
(v)(l0)ρ

(j)(l0− s0)|ρ(v)(l0− s0)ρ
(j)(l0)w

(j)(l0)〉. (18)
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It is clear that the occupancy variables of the three particles for the initial state in this
contribution must beρ(i)(l0− s1)ρ

(v)(l0− s0)ρ
(j)(l0) and that the ensemble average in this

expression can be conveniently written as a product of two averages:

〈w(i)(l0)w(i)(l0− s1)w
(j)(l0)/ρ

(i)(l0− s1)ρ
(v)(l0− s0)ρ

(j)(l0)〉
×〈ρ(i)(l0− s1)ρ

(v)(l0− s0)ρ
(j)(l0)〉. (19)

The second of these averages is the probability of finding aj atom, a vacancy and ani
atom at the specified lattice sites. The first average is the mean value of the product of the
jump frequencies for three successive atom exchanges with the vacancy (the first by thej

atom from sitel0, the second of thei atom from sitel0 − s0, the third of thei atom from
site l0 − s1), conditional on the configuration before the first jump being that specified by
the occupation variables after the slash.

A similar reduction can be made for all the contributions toC(1)ij (W), (16), arising from

the use of (17), as well as to the remaining part of the first moment,C
(1)
ij (Y). In using the

formal expression for the latter,

C
(1)
ij (Y) =

∑
α,β,γ,δ

rγβ(i) · wγβ
(∑
δ 6=β

wδβ

)
rβα(j)wβαpα (20)

it is important to remember that the result of a transitionβ → δ in no way restricts the
possible choices of the transitionsβ → γ out of stateβ.

3.2. Use of Kirkwood superposition approximation

Evaluation of the averages in such expressions requires a knowledge of distribution functions
for the probabilities of finding groups of three or more particles in specified relative
positions. In practice only expressions for the pair distribution functions at nearest-neighbour
separations are readily available. We shall therefore use the Kirkwood superposition
approximation to express eachn-particle distribution function as a product ofn site fractions
(one for each particle) multiplied by a product ofn(n−1)/2 pair correlation functions (one
for each of the possible pairs fromn particles). We also assume that the pair correlation
functions differ from unity only at nearest-neighbour separations. For example, with these
approximations the distribution function in equation (19) becomes

〈ρ(i)(l0− s1)ρ
(v)(l0− s0)ρ

(j)(l0)〉 = cicvcjgjvgji (21)

wheregji is the pair correlation function for aj and ani atom at the nearest-neighbour
separation andci andcv are the site fractions ofi atoms and vacancies, respectively.

Some care is needed in evaluating the average jump frequencies with the same
approximation. We shall again use the contribution to−C(1)ij (W) written in (18) as an
example. For a simple cubic lattice inspection shows that onlys1 = −s0 contributes to the
sum and the contribution is therefore

−Nzs2cicvcjgjvgji〈wiij 〉 (22)

where

〈wiij 〉 ≡ 〈w(i)(l0)w(i)(l0+ s0)w
(j)(l0)/ρ

(i)(l0+ s0)ρ
(v)(l0− s0)ρ

(j)(l0)〉. (23)

As shown in figure 1(a), it is convenient to draw a diagram of the lattice showing the
sites occupied by the vacancy and jumping atoms in the initial configuration, i.e. before
any jumps have occurred, marked by an open square and by open circles, respectively, and
with the sites which are nearest neighbours to sites from which atoms make jumps marked
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by filled circles; all other sites are indicated by small open circles and are referred to as
unmarked sites. We recall that in the Kikuchi–Sato model a jump frequency depends on
the energy of interaction of the jumping atom with its nearest neighbours, i.e. with atoms at
black circle sites. The usual procedure at this point would be to imagine that we have first
averaged over the occupancies of all unmarked sites leaving an expression for〈wiij 〉 which
is a sum over all possible occupancies of the black circle sites. The summand is a product of
the jump frequencies and of the probability of finding a particular occupancy of black circle
sites conditional on the presence of the jumping atoms and the vacancy at their sites in the
initial configuration. However, if we calculated the corresponding contribution inC

(1)
j i we

would have an identical expression, except that there the initial configuration encountered
would be the final configuration inC(1)ij and the jumps would take place in the reverse
order. Because of the principle of detailed balance (wαβpβ = wβαpα) the results would
be identical if exact probabilities were available and, by doing this for all contributions,
we would findC(1)ij = C(1)j i . Furthermore, application of detailed balance to the complete
expression forLij shows that the Onsager reciprocal relationLij = Lji is valid. On the other
hand, if we use approximate probabilities then these symmetries no longer necessarily hold,
as can be verified by examples using the approximations proposed above. This difficulty
can be avoided as follows. We first modify the diagram inC(1)ij to include any additional
black circles which would be appropriate if the jumps were carried out in reverse order,
i.e. the order occurring inC(1)j i . In our example this gives figure 1(b). We again imagine

Figure 1. Schematic representations of〈wiij 〉, (23). (a) A crystal plane containing the initial
sites of atomsi andj (large open circles) and the vacancy (square). Lines indicate subsequent
atom–vacancy exchanges; for example, the label 2(i) indicates that in the second jump atomi
moves between the two sites connected by the line in the direction of the arrow. Atoms at sites
which are black circles are nearest neighbours to the initial site of a jumping atom in one or
more jumps; other sites are small open circles. A three dimensional diagram would show four
more black circles (two nearest neighbours to the initial site ofi and two nearest neighbours to
the initial site ofj ) in a plane perpendicular to the present figure. (b) The same jump sequence
as in (a) but with the additional black circles which are appropriate when the jumps are made
in the reverse order. A line between two sites now signifies that a pair correlation function will
appear in the expression for〈wiij 〉. The lettersa, b, c, d correspond to the usage in (24).
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that we have averaged over unmarked sites and write the appropriate expression containing
summations over the occupancies of black sites using the approximations for probability
functions defined at the start of this subsection. This is facilitated by reference to the
diagram where we have added lines for each pair correlation function, as in figure 1(b).
The result is

〈wiij 〉 = (w(0)i )2w(0)j
(
KjiKij

KjjKii

)(∑
a,b,c

cacbccgiagabgjbgbcgcv
KjbKiaKib

KjjK
2
ii

)4

×
(∑

d

cdgidKid/Kii

)
(24)

where

Kij = exp(Eij /kT ). (25)

The diagram notation of figure 1 is also very convenient for the other terms.

3.3. Final expressions for the moments and for the uncorrelated part

The application of the methods of sections 3.1 and 3.2 is straightforward but lengthy and
we therefore pass immediately to the final results. For the zeroth and first moments we find

C
(0)
ij /(Nzs

2cvcjgjv) = −cigij 〈wij 〉1+ δi,j 〈wii〉2 (26)

C
(1)
ij /(Nzs

2cvcjgjv) = −ci
∑
k

ckgikgjk[〈wijk〉1+ 4(〈wijk〉2− giv〈wijk〉3)]

+cigij
(
〈wiij 〉4+ 〈wiij 〉8+ 〈wijj 〉11+ 4

∑
k

ckgjk〈wikj 〉7
)
+ cigiv〈wijj 〉5

−δi,j
[
〈wiii〉6+ 〈wiii〉12+

∑
k

ckgjk(4〈wkjj 〉9+ 〈wkjj 〉10)

]
. (27)

The expression for the uncorrelated part of the phenomenological coefficient, evaluated by
the same methods, is

L
(0)
ij = δi,jNzs2cvcjgjv〈wj 〉/(6V kT ). (28)

Expressions for the averages of products of jump frequencies in these equations are given
in the appendix. Formulae in the appendix for the radial distribution functions in these
expressions were derived in a manner consistent with that used in evaluating the moments,
i.e. detailed balance and the extended Kirkwood superposition approximation were applied
to atom–vacancy exchanges. The radial distribution function formulae turn out to be the
same as those obtained by Kikuchi and Sato (1970) using the cluster variation method.

4. An approximation for the phenomenological coefficients

We shall use an adaptation of the Mori (1965) formalism to construct an approximation
to the correlated parts of theL-coefficients. In the standard formulation Mori’s method
employs normalized time correlation functionsYij (t) defined by the matrix equation

Y(t) = C(t)C(0)−1 (29)

where, for example, the matrixC(t) is, for a two component system,

C(t) =
[
CAA(t) CAB(t)

CBA(t) CBB(t)

]
. (30)
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A set of matricesM(n)(t) wheren = 0, 1, 2, . . . is introduced whereM(0)(t) = Y(t) and
the functions forn > 0 are called memory functions. The matrices satisfy a coupled set of
equations of the form

dM(n)(t)

dt
= −Ω(n)M(n)(t)+

∫ t

0
M(n+1)(t − τ)∆2(n+1)M(n)(τ ) dτ. (31)

The functionsM(n)
ij , �(n)ij and12(n+1)

ij in the matrices can all be expressed as inner products
of certain ‘random force’ functions as described by Qin and Allnatt (in preparation). Their
derivation elaborates the differences between the Mori-type results referred to here, which
are based on the discrete master equation, and those for Hamiltonian systems first described
by Mori (1965). (One such difference is the necessary difference in sign preceding the
integral in (31).) From the Laplace transform of (31) withn = 0, 1, 2, . . . successively one
can construct a continued fraction expression

Ȳ(p) = [pI+Ω(0) − M̄(1)(p)∆2(1)]−1

= [pI+Ω(0) − {pI+Ω(1) − M̄(2)(p)∆2(2)}−1∆2(1)]−1 = · · · . (32)

Here I denotes the unit matrix and̄F(p) is the Laplace transform with respect tot of a
functionF(t). We shall use the first approximation obtained by approximatingM̄(1)(p) by
zero in the first line of (32). From (31)−�(0) is equal to the first moment,Y(1) of Y(t) and
our approximation is therefore

Ȳ(p) = [pI− Y(1)]−1. (33)

Results for the correlated parts of theL-coefficients are usually reported in terms of
dimensionless correlation functions defined asfAA = LAA/L

(0)
AA and fAB = LAB/L

(0)
AA

plus similar relations with A and B interchanged. (The less convenient notationf
(A)
AB is

often used in the literature for ourfAB .) By use of (5), (7), (29) and (33) one obtains

f = I+ 1

3V kT
(Y(1))−1C(0)(L(0))−1. (34)

The elements ofY(1) = C(1)(C(0))−1 and ofC(0) are readily found from (26) and (27), and
the elements ofL(0) from (28). The resultant expressions for the elements off are rather
lengthy and will not be written out here.

The corresponding approximation for the time correlation functions is also of interest.
For comparison with Monte Carlo data the functions normalized to unity att = 0 are
convenient:

Nij (t) = Cij (t)/Cij (0) (i, j = A,B). (35)

The normalized matrixN(t) is symmetric, unlikeY(t). One finds from (33) the result

Nij (t) = (a1− a2)
−1{[a1+N(1)

ij − Tr(Y(1))] ea1t − [a2+N(1)
ij − Tr(Y(1))] ea2t } (36)

whereN(1)
ij is the first moment ofNij (t), a1 anda2 are the roots of

a2+ Tr(Y(1))a + |Y(1)| = 0 (37)

and |Y(1)| denotes the determinant ofY(1).
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5. Comparison with simulation results

The correlation functionsfij are determined byE/kT , whereE = EAA + EBB − 2EAB ,
and a further quantity which reflects the difference in strength of AA and BB interactions;
the latter is usually taken asU defined by

U = EAA − EBB
E

. (38)

Our calculations assume the absence of long-range order and are therefore limited to
temperatures above the order–disorder temperature which is atE/kTc = 0.887 for the

(a)

(b)

Figure 2. The correlation functionsfij as functions ofcA, the site fraction of A, for
E/kT = 0.63: —— the present approximation;- - - - the path probability theory, Wang and
Akbar (1995); - -◦ - - simulation results, Zhanget al (1989), Qin and Murch (1993). (a)U = 0;
(b) and (c)U = 0.5.
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(c)

Figure 2. (Continued)

simple cubic lattice. Monte Carlo simulations for the correlation functions as functions
of composition atE/kT = 0.63 have been made forU = 0 by Zhanget al (1989)
and forU = 0.5 by Qin and Murch (1993) with the simplifying model assumption that
νi exp(−U †i /kT ) = 1 for i = A, B in the expression for the jump frequency, (1). Our
predictions are compared in figure 2 both with these Monte Carlo results and with the
predictions of the pair approximation of the path probability method (PPM) given by Wang
and Akbar (1995). ForU = 0, figure 2(a), interchange of A and B labels gives results for
the two other correlation functions. Our results for the diagonal correlation functions are
superior to the PPM results in the middle of the concentration range where correlation
effects (measured by the deviation offii from unity) are largest; for the off-diagonal
correlation functions (where correlation effects are to be measured by the deviation of
fij from zero) they are again superior, particularly in the concentration ranges where the
correlation functions are largest.

Qin et al (1995) have shown that for a binary random alloy the three normalized time
correlation functions,Nij (t), must be exactly equal and that the approximation used here
(M̄(1)(p) = 0) then expresses the single time correlation function as a single exponential
decay in time. Comparison with Monte Carlo simulations showed that for the random alloy
this approximation is good at small times but underestimates the time correlation function
at long times. We have made a limited check on whether the same qualitative relationship
between time dependence of the theoretical and simulated time correlation functions holds
here. Monte Carlo simulations were made on a 20× 20× 20 simple cubic lattice. An
equilibrium system was first created by a grand canonical ensemble simulation as described
by Murch (1982) starting from a random distribution of equal numbers of A and B atoms.
The time correlation functions were then simulated by the method described by Qinet al
(1995) for the random alloy; the only significant difference from the scheme they describe
is that in each configuration the jump frequencies have to be calculated from the species
of the neighbours of atoms adjacent to the jumping atom. The results in figure 3 for the
equiatomic composition at the same temperatureE/kT = 0.63 withU = 0 show that, once
again, there is good agreement at small times but the theoretical values of the normalized
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(a)

(b)

Figure 3. The logarithm of normalized time correlation functionsNij (t) as functions of time
t for cA = 0.5, E/kT = 0.63, U = 0: · · · · · · Monte Carlo simulation; —— present theory.
(a)NAA(t), (b) NAB(t).

time correlation functions are too small in magnitude at long times. Results forU = 0.5
are very similar for all three correlation functions.

6. Concluding remarks

In this paper we have obtained approximate expressions for the time-dependent correlation
contributions to theL-coefficients of a model of a binary alloy with short range order and the
vacancy transport mechanism. These results were based on calculations of the zeroth and
first moments of the time correlation functions and an approximation to the Mori continued
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fraction. However, the method introduced for systematic enumeration of the contributions to
the moments applies equally to higher moments and avoids the likelihood of omitting terms
that accompanies other routes we have tried. An important feature of the method is that
the Onsager reciprocal relations remain valid despite the use of the Kirkwood superposition
approximation for equilibrium correlation functions.

Comparison with simulation results showed that our expressions for theL-coefficients
are appreciably more accurate than the only other available expressions, which derive from
the path probability formalism. The expressions are rather lengthy but we have not so
far found convincing simplifying approximations. Because the moments are calculated
exactly (within the Kirkwood superposition approximation) they can be used to check future
approximate kinetic equation methods of evaluating the time correlation functions where
physical approximations are more naturally introduced. Such theories will, in effect, make
approximations to the moments we have calculated as well as making approximations to
the higher moments not calculated here.

The results seem encouraging and we should comment briefly on the approximations
made and their possible improvement. The least significant approximation is probably the
use of the Kikuchi–Sato expressions for the nearest-neighbour radial distribution functions.
Checks by Monte Carlo simulation indicate inaccuracies of up to 1–2% near the equiatomic
composition which are not significant for present purposes. On the other hand estimates of
the effect of using the Kirkwood superposition approximation for higher order distribution
functions and the nearest-neighbour approximation are not easily made and would imply a
substantial amount of simulation; at present any theory is likely to be forced to make this
approximation in order to obtain useable results. The truncation approximation used in the
Mori scheme is expected to be much more significant and two points arise in this context. In
the first place further simulation data on the time correlation functions are needed to establish
whether long time tails will be significant in modelling the time correlation functions over a
wide range of conditions; such features are familiar for fluids, see for example Hansen and
McDonald (1986). The Mori framework used here and the results for low order moments
we have derived remain useful in such circumstances but would have to be supplemented
by mode coupling ideas. The second question is whether higher moments of the time
correlation functions are likely to become available. In additional work we have found
that several hundred terms contribute to the second and third moments. This suggests that
computer assisted symbolic calculation would be an essential feature if higher moments are
to be incorporated, even if they are based on the Kirkwood superposition approximation.
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Appendix

The averages of products of jump frequencies appearing in (26)–(28) can be written in terms
of the following functions. The functionsFp(np), Fpq(np, nq), Fpqr(np, nq, nr), . . . , where
p, q, r, . . . denote particle species, are defined with the aid of figure A1. We translate
the diagram into a product containing (i) a factorgab for a full line between black circles
labelleda and b, (ii) a factor gpa (Kpa/Kpp)np for a broken line between a white circle
labelledp and a black circle labelleda (with the definitionKva = 1) and (iii) a factor of
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Figure A1. The graphical definition of the functionsFp(np), Fpq(np, nq), Fpqr (np, nq , n)r), . . .
with the conventions introduced in the appendix.

ca for a black circle labelleda. We sum the product over the atom species of each black
circle, e.g. if there is a black circle labelleda we sum overa = A, B. For example, we
have

Fpq(np, nq) =
∑
a

∑
b

cacbgabgpa

(
Kpa

Kpp

)np
gqb

(
Kqb

Kqq

)nq
. (A1)

We also define modifiedF -functions, such asFpq[r](np, nq, [nr,mr ]), in which one of the
particles in the subscript is in square brackets and the corresponding symbol in the argument
is replaced by a pair of labels in square brackets. In such a case we write the formula for
the corresponding unmodified function (thenr in square brackets here plays the role of
nr for the unmodified function) and then multiply the summand by an additional factor
(Kra′/Krr)

mr , wherea′ is the species of the black circle which is connected by a broken
line to the white circle of the particle immediately to the left ofq in the subscript ofF , e.g.

Fpq[r](np, nq, [nr,mr ]) =
∑
a,b,c

cacbccgabgbcgpa

×
(
Kpa

Kpp

)np
gqb

(
Kqb

Kqq

)nq
grc

(
Krc

Krr

)nr (Krb
Krr

)mr
. (A2)

We also define four additional functions by the equations

Gpq =
∑
a

cagpaKqa/Kqq

Gpq(np, nq) =
∑
a

cagpagqa

(
Kpa

Kpp

)np (Kqa
Kqq

)nq
Gpqr =

∑
a

cagpaKpagqaKra

Gpqrs(np, nq, nr , ns) =
∑
a,b,c,d

cacbcccdgabgbcgcdgadgpa

×
(
Kpa

Kpp

)np
gqb

(
Kqb

Kqq

)nq
grc

(
Krc

Krr

)nr
gsd

(
Ksd

Kss

)ns
. (A3)

The expressions for the averages of products of jump frequencies in (26) and (27) are then

〈wij 〉1 = w(0)i w(0)j Fi(1)[Fvji(0, 1, 1)]4Kji/Kjj

〈wii〉2 = (w(0)i )2Fi(1)Gvi [Fv[i](0, [1, 1])]4

〈wijk〉1 = w(0)i w(0)j w
(0)
k Fi(1)[Fvjki(0, 1, 1, 1)]4KjkKki/(KjjKkk)

〈wijk〉2 = w(0)i w(0)j w
(0)
k Fi(1)[Fki(1, 1)Fvj (0, 1)]3Gvk(0, 1)Gji(1, 1)KjkKki/(KjjKkk)
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〈wijk〉3 = w(0)i w(0)j w
(0)
k Fik(1, 1)Fjk(1, 1)Fjv(1, 0)Fiv(1, 0)[Gijkv(1, 1, 1, 0)]2

×KijKjkKki/(KiiKjjKkk)
〈wiij 〉4 = (w(0)i )2w(0)j Fi(1)[Fvj [i](0, 1, [1, 1])]4KjiKij /(KjjKii)

〈wijj 〉5 = w(0)i (w(0)j )2Fi(1)Fj (1)[Fiv[j ](1, 0, [1, 1])]4Kji/Kjj

〈wiii〉6 = (w(0)i )3Fi(2)Gvi [Fv[i](0, [2, 1])]4

〈wikj 〉7 = w(0)i w(0)k w(0)j Fi(1)[Fk(1)Fvji(0, 1, 1)]3Gik(1, 1)Gkv(1, 0)KjkKji/K
2
jj

〈wiij 〉8 = (w(0)i )2w(0)j Fi(2)[Fvji(0, 1, 2)]4Kji/Kjj

〈wkjj 〉9 = w(0)k (w(0)j )2Fk(1)GvjFkj (1, 1)Fv[j ](0, [1, 1])[Fv[j ]k(0, [1, 1], 1)]2GkvjKjk/Kjj

〈wkjj 〉10 = w(0)k (w(0)j )2Fk(1)Gvj [Fv[j ]k(0, [1, 1], 1)]4Kjk/Kjj

〈wijj 〉11 = w(0)i (w(0)j )2Fi(1)Gvj [Fv[j ]i (0, [1, 1], 1)]4Kji/Kjj

〈wiii〉12 = (w(0)i )3Fi(1)Fi(2)[Fv[j ](0, [1, 2])]4. (A4)

For (28) we also need

〈wj 〉 = w(0)j Fj (1)Fvj (0, 1). (A5)

Only three of the radial distribution functions needed in (A4) and (A5) are independent.
Expressions for these are

gjj = (cj − cj̄ + R)/[cj (1+ R)] (A6)

gjj̄ = 2/(1+ R) (A7)

gjv = Kjj (cj − cj̄ + R)/{cj [Kjj (cj − cj̄ + R)+ 2cj̄Kjj̄ ]} (A8)

where

R2 = (cj − cj̄ )2+ (4cj cj̄K2
j j̄
)/(KjjKjj ). (A9)
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